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NOMENCLATURE 

constant pressure gradient term in boundary-layer 
equations; 
x-component function occurring in similarity 
variable ; 
y-component function occurring in the transfor- 
med coordinate ; 
arbitrary function of 5 obtained by the nth in- 
tegration of the mth order perturbation of the 
boundary-layer equation ; 
x-component of boundary-layer velocity; 
freestream velocity ; 
~-component of boundary-layer velocity ; 
coordinate parallel to body surface measured from 
stagnation point; 
coordinate normal to body surface. 

Greek symbols 
the perturbation variable, i: = dc/dx ; 
transformed coordinate; 
kinematic viscosity ; 
transformed coordinate; 
stream function. 

INTRODUCTION 

THE ‘w~~~dmethod for obtaining locally similar solutions of 
the boundary-layer equation has been known and used 
successfully for some time. This method invoives the transfor- 
mation of an independent variable, which produces a per- 
turbation about a similar solution-the FalknerrSkan so- 
lution [l]. The transformation was first presented in this 
sense by Meksyn [2] and Gortler [3]. Merk [4] was able to 
form the perturbation series in terms of a universal function 
but obtained a solution for the first term of the series only. 
Chao and Fagbenle [5] were able to carry the expansion to 
four terms and produced very accurate solutions for flow and 
heat transfer over 2-dim. and axisymmetric bodies. It has not 
been known, however, how to obtain such transformations in 
general, the only existing one apparently having been ob- 
tained intuitively. In what follows, a general method for 
finding such transformations is presented, and a perturbation 
is made about a new similar solution to the iaminar, 
incompressible, boundary-fayer momentum equation. This 
similar solution is in terms of simple analytical functions, as 
are the higher order terms. The solution allows arbitrary 
accelerated edge velocity distribution and arbitrary wall 
transpiration. 

The general applicability of the method is demonstrated 
through series solutions to the general form of the Riccati 
equation. Where comparisons are available, solutions match 
exactly those obtained by conventional methods. Further 
details and examples can be obtained in the original thesis 
[61. 

*This work is based upon the author’s doctoral thesis, 
University of Illinois. 

SOLUTIONS OF THE BOUNDARY-LAYER EQUATlON 

Application of the transformation $ = ii/(s), rl = g(x) + 
h(y) to the steady, iaminar, 2-dim. incompressible boundary- 
layer equation yields 

where the primes on the stream function, $. indicate 
differentiation with respect to g, those on u,, differentiation 
with respect to x. To obtain equation (I), it is required that pl 
= s(x) + y, where the boundary conditions then determine 
that y(x) = S, the boundary-Iayer thickness. The boundary- 
layer then lies between the wall at r~ = 0 and the boundary- 
layer edge at 11 = s(x), 1’ = 0. Equation (1), which is linear in 
$, yields an ordinary differential equation only for the special 
case of a constant pressure gradient, for which case its 
solution yields accurate results. It is now desired to perturb 
equation (1) in order to increase its range of application. This 
is done by defining a new transformation of the form $ = 
(I, (q, c), where 5 = 5 (x) and the functional form of 5 is as yet 
undetermined. The boundary-layer equation now becomes 

The LHS of equation (2) is multiplied by df/dX, which can 
now be used as a ‘~rturbation variable‘, a(t), thus eliminating 
the non-linear terms from the zero-order equation when a 
perturbation solution is assumed. This is the essential idea of 
the method-to choose an initially arbitrary transformation 
that then becomes the perturbation ‘parameter’. Thus, in the 
usual manner we now set 

and also 

t/!=*a+a$,+cZ*2+... (3) 

ii& = c + & (4) 

i.e. the pressure gradient differs by an amount c from being 
constant. r is now defined by equation (4) and by E = d&dx. 
Substitution of these equations into equation (2) and collect- 
ing terms of order-zero in c give 

?%!+t=o. 
a$ v 

Equation (5) is identical to the previous similar solution, 
equation (l), except that (I/ is now a function of two 
independent variables, q and <. However, since differentiation 
is only with respect to tr, equation (5) may be integrated 
directly to give 

$0 = - g + +q2 + MO,? + M,, (6) 
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where the M,, are arbitrary functions oft. The requirement 
that $& = 0) = 0 gives M,, = 0. The velocity at the wall is 
determined by M,,, which would normally be zero but can 
also be used to allow arbitrary slip flow as a function of i: (or 
x). The requirement that 

The edge velocity is given by 

Using equation (7) and solving equation (8) for 9 gives 

2vu, ’ = 
9 = ---- 

i 1 c 

(7) 

This is the boundary-layer thickness, but an appropriate 
value for C (the ‘similar’ pressure gradient that is being 
perturbed) has still to be determined. 

The velocity gradient at the wall is given by 

00) 

This extremely simple zero-order solution already produces 
reasonable accuracy, but comparison will await the full 
solution. 

The zero-order velocity in the y direction is obtained by 
differentiating equation (6) with respect to x 

v= dhfo, _-; 
i \2 d5 

rldMo* + dMo, - -.-+- 
dt F’ i 

(11) 

Evaluated at the wall, equation (I 1) gives 

Thus, arbitrary wall blowing or suction as a function of< may 
be introduced by setting 

M,, = - i‘ !!i di’. 

6 

The order-one equation for $ is obtained from equation (2) 
and (3) 

The terms multiplied by dl:/d< immediately present a 
problem in that their retention greatly complicates the 
solution of equation (14), and even though it is linear in $,, 
this writer was not able to find a general solution using 
conventional methods. A solution can be obtained by apply- 
ing the method of this work specifically to equation (14) (i.e. 
by performing a separate perturbation), but the increased 
accuracy is not felt to warrant the increased complexity. It is 
thus now assumed that de/d< _ O(c), and these terms are 
neglected in equation (14). Substitution of the previous 
solution for tj, into the remaining terms ofequation (14) gives 

Once again differentiation of the dependent variable is only 
with respect to 11. Integration of equation (15) gives 

For this and subsequent orders, all of the boundary 
conditions are zero, which requires that MI2 = M ,.? = 0. 
M, 1(<) is used to ensure that the order-one contribution to 
the edge velocity is zero. Thus, setting I,@, equal to zero at the 
boundary-layer edge (9 = y) gives 

Di~erentiating the solution, equation (16), and evaluating the 
result at F) = 0 shows tbat 

(18) 

i.e. M 1, is the first-order contribution to the velocity gradient 
at the wall. 

The boundary condition 

(19) 

requires that 

c = l&/2. (20) 

Of course, C is arbitrarv but constant and thus can only 
satisfy the boundary condition (19) locally. Note that C could 
have been initially chosen as C(t), and this choice indeed 
produces rapid convergence of the perturbation series, but the 
solution then becomes singular for some regions of interest. 

The second-order solution is obtained in the same manner 
as the previous solutions. Only the results are presented here 

dIMa V’ 
- ~ --...- 1 - 

1008~’ dc’ 1’ 

(20 

Here, the boundary conditions have been evaluated exactly 
as in the fist-order solution, except that C has already been 
used in the first-order solution to satisfy the boundary 
condition (19) and is no longer available to the second-order 
solution. This condition is thus left unsatisfied and limits the 
accuracy of the method to the three terms already obtained. 
The second-order velocity gradient at the wall is given by 

where M, , is obtained in the same manner as M, t. 
These expressions appear quite cumbersome but simplify 

greatly when substitutions for M,,, M,, etc. are made. Thus, 
when the M,,‘s and y are written in terms of a, as defined 



1769 

Table 1. Comparison of skin friction results for flow over a wedge with those of Hartree [7] 

(C,/2) I&?::2 

P c* 2 Terms Hartree % Difference 3 Terms % Difference 

0.1 

0.3 

2/3 

1.0 

1.6 

Case I 0.306 0.426 
Case 2 0.297 0.426 

Case 1 0.560 0.594 
Case 2 0.545 0.594 

Case 1 0.943 0.899 
Case 2 0.917 0.899 

Case 1 1.333 1.233 
Case 2 1.296 1.233 

case 1 2‘667 2.405 
Case 2 2.593 2.405 

-28 0.434 1.9 
-30 

- 5.7 0.585 - I.5 
-8.4 

4.9 0.888 -1.1 
2.0 

S.! 1.219 -i.I 
5.2 

10.9 2.382 -0.9 
7.8 

previously, the zero-order solutions for velocity and velocity 
gradient at the wall, obtained by differentiating equation (6) 
become 

and 

(23) 

The corresponding first-order solutions are obtained from 
equation (16) 

and 

Similar reductions are obtained in the second-order 
solutions. 

Al! of the terms reduce even further when a suitable choice 
for the value of C is made. There are three useful choices. The 
first, as mentioned earlier, is C = u&/2, which allows local 
satisfaction of the boundary condition du,/c?y, = 0. This 
produces the most accurate results in a three-term expansion 
but converges slowly. Another selection is to allow c to go to 
zero locally, which implies C = u,uk. Since this produces the 
smallest possible perturbation parameter, convergence is 
(usually) most rapid, with two terms producing usefuf results. 
The third term, however, diverges, Still another choice is 
necessary. Both of the above require C to contain u;, which 
produces a singuiarity in the second-order terms when u, 
approaches zero, i.e. a iow-pressure gradient flow. Since C is 
comp!etely arbitrary (the perturbation can be about any 
similar solution), it is possible to select a value for C that 
shifts the singularity away from the point of zero pressure 
gradient. The approach taken here is to simply shift the 
singu~drity to the stagnation point by substituting C = u:/2 
for C = u,u’,/2. Note that the dimensions for this new 
magnitude of C must still be taken as !ength/(time)*. This 
selection yields reasonable accuracy in the low-pressure 
gradient region for two terms but diverges with three terms 
because of loss of boundary condition satisfaction. 

COMPARISONS WITH PREVIOUS SOLUTIONS 

The original work [6] compares resultsofthisrnethod with 

numerical solutions for flows over wedges, cylinders, cylin- 
ders with suction, spheres, and the Schubauer ellipse. Only 
the results for skin friction over a wedge are presented here, 
compared with numerical calculations by Hartree [7]. These 
results are typical of the other geometries. 

Table 1 presents comparisons in terms of dimensionless 
skin friction, (CJ2) Re, Is’. The included wedge angle is given 
by rr& and rest&s for a wide range of @‘s are shown. The 
potential flow for a given fi is described by ta, = x”, where m = 
p/(2 - @). Three terms of the soiution produce errors of less 
than 2%. Two terms give results accurate to within approxi- 
mately 50/, except at very low or very high p. The simplicity 
of even the three-term solution allows results to be obtained 
immed~te!y on a hand calculator. 

Note that it is not necessary that the perturbation be 
performed abaut an ordinary differential equation (in the 
present case obtained from a similarity transformation). In 
the case of the boundary-layer equation, for example, it is 
possible to perform the perturbation directly by writing II, = 
t/Q, 5). 5 = e(x) and then proceeding as before. This, in fact, 
produces reasonable rest&s. The advantage of the similarity 
transformation is that more information is contained in the 
zero-order equation and convergence is thus more rapid. 

Finafty, although not s~~~~~a!Iy derived here, it is easy to 
obtain momentum thickness, dis~!a#ment thickness, etc., 
from the analytical velocity solutions as presented. The 
thermal boundary-layer equation (constant property), which 
is linear, can now also be so!ved analytically by conventional 
means (or by this ~rturbation) by substitution of the 
appropriate velocity solutions into equation. 

1. 
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